Multiscale Decompositions on Bounded Domains

نویسنده

  • A. Cohen
چکیده

A construction of multiscale decompositions relative to domains Ω ⊂ Rd is given. Multiscale spaces are constructed on Ω which retain the important features of univariate multiresolution analysis including local polynomial reproduction and locally supported, stable bases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast multiscale Gaussian beam methods for wave equations in bounded convex domains

Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for pure initial-value problems of wave equations, we develop fast multiscale Gaussian beam methods for initial boundary value problems of wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, ...

متن کامل

A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed i...

متن کامل

Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces

We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...

متن کامل

Quasi-Primary Decomposition in Modules Over Proufer Domains

In this paper we investigate decompositions of submodules in modules over a Proufer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Proufer domain of finite character are proved. Proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decompo...

متن کامل

(BV, L2) Multiscale Hierarchical Decomposition: Modes and Rates of Convergence

Tadmor, Nezzar and Vese [Eitan Tadmor, Suzanne Nezzar, and Luminita Vese. A multiscale image representation using hierarchical (BV, L2) decompositions. Multiscale Model. Simul., 2(4):554–579, 2004.] developed a total variation based multiscale method for decomposing a function f ∈ BV into a countable set of features {uk : k = 0, 1, 2 . . .} associated to a sequence of dyadic scales {λk = λ02−k ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995